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Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Planar Graphs and Graph Coloring Problem 2/27



Three Cabins – Three Wells
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Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Planar Graphs and Graph Coloring Problem 2/27



Planar Graphs

Definition

We will say that a diagram of a graph in an Euclidean plane is a planar
diagram, if its edges do not intersect nowhere exept vertices.
A graph G = (V ,H) is a planar graph if there exists a planar diagram
of it.
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Obr.: Two diagrams of the same graph G = (V ,H),

where V = {1, 2, 3, 4}, H={{1, 2},{1, 3},{1, 4}, {2, 3},{2, 4},{3, 4}}.
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Face of a Planar Graph

Definition
A face of a planar diagram is the maximal part of the plane whose
arbitrary two points can be joined by a continuous line which does not
intersect any edge of that diagram.
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One face of a planar diagram.
Part of the plane bounded by edges {4, 5}, {5, 6}, {6, 4} is a face.
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Face of a Planar Graph
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There are two types of faces – Exaxtly one face which is not bounded –
this face is called outer face. Other faces are called inner faces.

Remark
Let us observe that vertices and edges of a diagram that determine a face
create a

”
cycle“.

There can exist also edges in a diagram that does not bound any face –
such edges are {4, 7}, {4, 8}.
An edge is a border edge of a face if and only if it is contained at least in
one cycle.
By extracting arbitrary edge of a cycle of a diagram the number of faces
drops by 1.
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Euler Polyhedral Equation

Theorem
Euler Polyhedral Equation Let G = (V ,H) be a connected planar
graph, let F be the set of faces in its planar diagram. The it holds:

|F | = |H| − |V |+ 2. (1)

Proof.

By mathematical induction by the number |F | of faces of planar diagram.
If |F | = 1 connected graph G does not contain a cycle – therefore G is a
tree.

In a tree it holds |H| = |V | − 1.
Calculate: |H| − |V |+ 2 = (|V | − 1)− |V |+ 2 = 1.
For |F | = 1 we have

1 = |F | = |H| − |V |+ 2.
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Euler Polyhedral Equation

For |F | = 2

Be removing one edge h of a cycle we drop the number of faces.
The result is a planar connected graph G ′ = (V ,H ′), where

H ′ = H − {h}

|H ′| = |H| − 1

with the following number of faces |F ′| = |F | − 1 = 2− 1 = 1

It holds for the case of one face:

1 = |F ′| = |H ′| − |V |+ 2.

1 + 1 = |F ′|+ 1 = |H ′|+ 1− |V |+ 2

2 = |F | = |H| − |V |+ 2
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Euler Polyhedral Equation

Let the theorem holds for all graphs
with number of faces ewual to |F ′|.
Let us have a graph with |F | = |F ′|+ 1 faces.

Be removing one edge h of a cycle we drop the number of faces.
The result is a planar connected graph G

′ = (V ,H
′), where

H
′ = H − {h}

|H ′| = |H| − 1

with number of faces |F ′| = |F | − 1

It holds for the case with |F ′| faces:

|F ′| = |H ′| − |V |+ 2.

|F ′|+ 1 = |H ′|+ 1− |V |+ 2

|F | = |H| − |V |+ 2
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Maximum of the Number of Edges in a Planar Graph

Theorem

Leth G = (V ,H) be a maximal planar graph with the vertex set V ,
where |V | ≥ 3. Then

|H| = 3 · |V | − 6. (2)

Proof.

In a maximal planar graph with fixed vertex set V every face has to be
a triangle – limited by 3 edges.
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Maximum of the Number of Edges in a Planar Graph

If a inner face is not a triangle

If the outer face is not a triangle
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Maximum of the Number of Edges in a Planar Graph

Every face is determined by 3 edges. If the
triangles were disjoint (every edge only in one
triangle) then we would need for them 3.|F |
edges.

However, every edge is contained in exactly two
faces, therefore the number of edges in a planar
graph with a maximum number of edges is

|H| =
3

2
· |F |

|F | =
2

3
· |H|

Euler’s polyhedral equation

|F | = |H| − |V |+ 2

2

3
· |H| = |H| − |V |+ 2

|V | − 2 =
1

3
· |H|

|H| = 3 · |V | − 6
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Maximum of the Number of Edges in a Planar Graph

Corolary

It holds fopr every planar graph G = (V ,H), where V ≥ 3:

|H| ≤ 3 · |V | − 6.
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Complete Graph K5 is not Planar

Theorem
Complete graph K5 with 5 vertices is not planar.

Proof.

Complete graph K5 has 5 vertices and (5 · 4)/2 = 10 edges.
If it was planar, it could have at most 3 · |V | − 6 = 3 · 5− 6 = 9 edges.
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Complete Bipartite Graph K3,3 is not planar

Theorem
Complete bipartite graph K3,3 is not planar.

Proof.
Suppose that graph K3,3 is planar.
Then its diagram does not contain a triangle – i. e. all its
faces are squares or n-angles with n ≥ 4.

Let diagram of graph K3,3 has |F | faces.
If border lines of a n-angles were disjoint we would need
for them at least 4.|F | edges.

Since every edge in diagram is in two n-angles we nedd at
least 4.|F |/2 = 2.|F | edges, i. e. |H| ≥ 2|F |

|H| ≥ 2 · |F |
︸︷︷︸

=|H|−|V |+2

= 2 · |H| − 2 · |V |+ 2 · 2

− |H| ≥ −2 · |V |+ 4

|H| ≤ 2 · |V | − 4
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Complete Bipartite Graph K3,3 is not planar

Graph K3,3 has 9 edges. It has 6 vertices and his diagram
does not contain a triangle.
If K3,3 was a planar graph it could have at most
2.6− 4 = 8 edges – therefore K3,3 can not be planar.

Definition

We will say that the graph G ′ = (V ′,H ′) originated from the graph
G = (V ,H) by subdividing the edge h ∈ H, if

V ′ = V ∪ {x} where x /∈ V ,

H ′ =
(
H − {{u, v}}

)
∪ {{u, x}, {x , v}} kde h = {u, v}.

We will say that graphs G = (V ,H), G ′ = (V ′,H ′) are homeomorphic,
if they are isomorphic or if it is possible to get from them a pair of
isomorphic graphs by a finite sequence of subdividings of edges of both of
them.Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Planar Graphs and Graph Coloring Problem 15/27
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Homeomorphic Graphs

3 4

2

3 4

2

1 1

5

a) Graph G b) Graph G
Homeomorphic Graphs.

Graph G originated from graph G by subdividing of edge {1, 4}.
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Kuratowski’s Theorem

Theorem
Kuratowski. Graph G is planar if and only if it does not contain a
subgraph that is homeomorphic K5 or K3,3.

a) Graph homeomorphic to K5 b) Graph homeomorphic to K3,3

Two prototypes of non planar graphs.
These two types of graphs are known in literature as Kuratowski’s graphs.
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Geographical Maps Coloring Problem

Geographical Map Coloring Problem:
To color states of a political map by minimum number of colors so that
no two neighbouring states (i.e. states with common border) are colored
with the same color.
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b)a) c)

1 1

6

5

1
3

2

4

Graph model for Geographical Map Coloring Problem.
a) assign one vertex (6) to sea and a vertex to every state,

b) ”join”two vertices corresponding to neighbouring states an edge,
c) diagram of resulting graph.

We have just transformed the Geographical Map Coloring Problem to the
following problem:
To color vertices of a graph by minimum number of colors so that no two
adjacent vertices are of the same color.Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Planar Graphs and Graph Coloring Problem 18/27
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Vertex Coloring Problem and Cromatic number of a Graph

Definition

A vertex coloring of a graph G = (V ,H) is a function which assignes
a color to every vertex v ∈ V .
For every positive integer k, a vertex k-coloring is a vertex coloring that
uses exactly k colors.
A proper vertex coloring of a graph is a vertex coloring such that every
two adjacent vertices are of different colors.

A graph G = (V ,H) is called vertex k-colorable if it has a proper vertex
k-coloring.

The chromatic number of a graph G, denoted by χ(G ), is the
minimum number k such that G is k-colorable.

Vertex Coloring Problem
To find a proper vertex k-coloring of a graph G with minimum k , i.e.
with minimum number of colors.
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Heuristics for Vertex Coloring Preoblem

Theorem
Vertex Coloring Problem is NP-hard.

Algorithm

Sequential vertex coloring algorithm.

Step 1. Let P = v1, v2, . . . , vn be arbitrary sequence of vertices of
graph G = (V ,H).

Step 2. For i = 1, 2, . . . , n do:
Assign to the vertex vi the color with least number different from all
colors of till now colored neighbours of vi .

♣
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Upper Bound of χ(G ) – of Chromatic Number of a Graph

Theorem
Sequential vertex coloring algorithm needs for its vertex coloring at most

max{deg(v) | v ∈ V }+ 1

colors.

Corolary

It holds for chromatic number χ(G ) of arbitrary graph G:

χ(G ) ≤ 1 + max{deg(v) | v ∈ V }
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Vertex Coloring of Planar Graphs and Geographical Maps Coloring
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Geographical maps coloring problem leed to a vertex coloring problem

with minimum number of colors.
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Vertex Coloring of Planar Graphs and Geographical Maps Coloring

Theorem
Appel, Haken, 1976. Every planar graph is 4-colorable.

Remark

It was proven in the late 19th century (Heawood 1890) that every
planar graph is 5-colorable.

However, no one could find a planar graph G with chromatic
number χ(G ) = 5.

Theorem on 4-colorability was the first major theorem to be proved
using a computer.

Computer procedure was originaly proposed by Heesch, Appel and
Haken have reduced this problem to checking about 1900
configurations.

Solving this problem consumed more then 1200 hours of computer
time.
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Parallel Vertex Coloring

Algorithm

Parallel Vertex Coloring Algorithm.

Step 1. Sort all vertices of graph G = (V ,H) into the sequence
P = (v1, v2, . . . , vn) by vertex degree in non ascending order.

Iniciate the color set F := {1}, j := 1.

Step 2. For i := 1, 2, . . . , n do:
{
If the vertex vi is not colored and has no neighbour of color j , then
assign the color j to vertex vi .
}

Step 3. If all vertices in sequence P are colored then STOP.

Step 4. If there exists at least one non colored vertex in sequence P
increase the number of colors i.e. set j:=j+1, F := F ∪ {j} and
GOTO Step 2.

♣
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LDF (Largest Degree First) Vertex Coloring Algorithm

The following algorithm is very similar to sequential coloring algorithm.
The only difference is that sequential coloring assign colors to vertices in
advance defined order while this algorithm chooses during course of
algorithm which vertex will be colored next. itel’ná farba.

Algorithm

LDF Vertex Coloring Algorithm(Largest Degree First).
Let us define a color degree of a vertex v ∈ V like a number of different
colors its colored neighbours of v .

Step 1. Choose a not colored vertex v with largest colored degree.

Step 2. Assign to the vertex v a color with lowest number.

Step 3.If all vertices are colored then STOP. Otherwise GOTO
Step 1.

♣
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Applications

Applications:

Assigment of radio frequencees

Minimization of the number of shopping bags

Minimization of the number of phases on traffic signal crossing

Scheduling of school courses into minimal number of time slots

Minimization of the number of bus stops on a bus station

Etc. ....
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