
Optimal Graph Traversals

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

5. mája 2016

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 1/37



Eulerian Trails and Tours

Problem of 7 bridges in Kaliningrad – K oningsberg
Leonhard Euler – 1736

A B

C

D

A B

D

C

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 2/37



Eulerian Trails and Tours

Definition

An Eulerian walk s(u, v) in a connected graph G = (V ,H) is a walk
that contains every edge of that graph.

An Eulerian tour is a closed Eulerian trail.

An Eulerian graph is a graph that contains an Eulerian tour.

Remark
A trail is a special case of a walk, therefore the above definiton fully
specifies an Eulerian trail in graph G as a trail that contains every edge
of that graph.

Remark

An Eulerian trail t(u, v) contains every edge of graph G exactly once
therefore the sequence of vertices and edges of that trail represents a way
how to draw the diagram of G by one pencil stroke.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 3/37



Euler’s Theorem

Theorem

(Euler, 1736.) A connected graf G = (V ,H) is Eulerian if and only if it
has all vertices of even degree.
A connected graf G = (V ,H) has an open Eulerian tour if and only if it
has exactly two vertices of odd degree.

Proof.

1 If there exists a closed Eulerian tour T in graph G then the the
degree of every vertex i is even since the number of edges of T
incomming into i is equal to the number of edges outgoing from i .

2 Constructing an Eulerian tour in a connected graph is described by
the following Algorithm:

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 4/37



Algorithm – Constructing an Eulerian Tour

Algorithm
Step 1. Start at any vertex s, set T := (s) and step by step extend
the trail T by an unused edge till possible.
The last vertex of T is s – trail T is closed.

Step 2. Choose the first vertex v of T that is incident with an
unused edge in trail T .

If such vertex v does not exist then STOP.

Trail T is the desired Eulerian tour.

Step 3. Create a trail S as follows:

Set S := (v) and step by step extend the trail S by an unused edge
till possible. Last vertex of S is v – S is closed trail.

Step 4. Split trail T into s–v trail T1 and v–s trail T2, i. e.
T = T1 ⊕ T2.

Set T = T1 ⊕ S ⊕ T2.

The new trail T is concatenation of trails T1, S and T2.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 5/37



Algorithm – Constructing an Eulerian Tour

Algorithm
Step 1. Start at any vertex s, set T := (s) and step by step extend
the trail T by an unused edge till possible.
The last vertex of T is s – trail T is closed.

Step 2. Choose the first vertex v of T that is incident with an
unused edge in trail T .

If such vertex v does not exist then STOP.

Trail T is the desired Eulerian tour.

Step 3. Create a trail S as follows:

Set S := (v) and step by step extend the trail S by an unused edge
till possible. Last vertex of S is v – S is closed trail.

Step 4. Split trail T into s–v trail T1 and v–s trail T2, i. e.
T = T1 ⊕ T2.

Set T = T1 ⊕ S ⊕ T2.

The new trail T is concatenation of trails T1, S and T2.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 5/37



Algorithm – Constructing an Eulerian Tour

Algorithm
Step 1. Start at any vertex s, set T := (s) and step by step extend
the trail T by an unused edge till possible.
The last vertex of T is s – trail T is closed.

Step 2. Choose the first vertex v of T that is incident with an
unused edge in trail T .

If such vertex v does not exist then STOP.

Trail T is the desired Eulerian tour.

Step 3. Create a trail S as follows:

Set S := (v) and step by step extend the trail S by an unused edge
till possible. Last vertex of S is v – S is closed trail.

Step 4. Split trail T into s–v trail T1 and v–s trail T2, i. e.
T = T1 ⊕ T2.

Set T = T1 ⊕ S ⊕ T2.

The new trail T is concatenation of trails T1, S and T2.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 5/37



Algorithm – Constructing an Eulerian Tour

Algorithm
Step 1. Start at any vertex s, set T := (s) and step by step extend
the trail T by an unused edge till possible.
The last vertex of T is s – trail T is closed.

Step 2. Choose the first vertex v of T that is incident with an
unused edge in trail T .

If such vertex v does not exist then STOP.

Trail T is the desired Eulerian tour.

Step 3. Create a trail S as follows:

Set S := (v) and step by step extend the trail S by an unused edge
till possible. Last vertex of S is v – S is closed trail.

Step 4. Split trail T into s–v trail T1 and v–s trail T2, i. e.
T = T1 ⊕ T2.

Set T = T1 ⊕ S ⊕ T2.

The new trail T is concatenation of trails T1, S and T2.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 5/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5, 7)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5, 7, 4)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5, 7, 4, 3)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5, 7, 4, 3, 1)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5, 7, 4, 3, 1)
T1 = (1, 2), T2 = (2, 5, 7, 4, 3, 1)
S = (2, 3)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5, 7, 4, 3, 1)
T1 = (1, 2), T2 = (2, 5, 7, 4, 3, 1)
S = (2, 3, 5)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5, 7, 4, 3, 1)
T1 = (1, 2), T2 = (2, 5, 7, 4, 3, 1)
S = (2, 3, 5, 4)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 5, 7, 4, 3, 1)
T1 = (1, 2), T2 = (2, 5, 7, 4, 3, 1)
S = (2, 3, 5, 4, 2)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12, 7)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12, 7, 11)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12, 7, 11, 13)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12, 7, 11, 13, 10)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12, 7, 11, 13, 10, 9)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12, 7, 11, 13, 10, 9, 4)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12, 7, 11, 13, 10, 9, 4, 8)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2
︸ ︷︷ ︸

S

, 5, 7, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7), T2 = (7, 4, 3, 1)
S = (7, 6, 12, 7, 11, 13, 10, 9, 4, 8, 7)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12, 7, 11, 13, 10, 9, 4, 8, 7
︸ ︷︷ ︸

S

, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12), T2 = (12, 7, 11, 13, 10, 9, 4, 8, 7, 4, 3, 1)
S = (12, 13)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12, 7, 11, 13, 10, 9, 4, 8, 7
︸ ︷︷ ︸

S

, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12), T2 = (12, 7, 11, 13, 10, 9, 4, 8, 7, 4, 3, 1)
S = (12, 13, 9)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12, 7, 11, 13, 10, 9, 4, 8, 7
︸ ︷︷ ︸

S

, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12), T2 = (12, 7, 11, 13, 10, 9, 4, 8, 7, 4, 3, 1)
S = (12, 13, 9, 8)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12, 7, 11, 13, 10, 9, 4, 8, 7
︸ ︷︷ ︸

S

, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12), T2 = (12, 7, 11, 13, 10, 9, 4, 8, 7, 4, 3, 1)
S = (12, 13, 9, 8, 10)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12, 7, 11, 13, 10, 9, 4, 8, 7
︸ ︷︷ ︸

S

, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12), T2 = (12, 7, 11, 13, 10, 9, 4, 8, 7, 4, 3, 1)
S = (12, 13, 9, 8, 10, 11)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12, 7, 11, 13, 10, 9, 4, 8, 7
︸ ︷︷ ︸

S

, 4, 3, 1)

T1 = (1, 2, 3, 5, 4, 2, 5, 7, 6, 12), T2 = (12, 7, 11, 13, 10, 9, 4, 8, 7, 4, 3, 1)
S = (12, 13, 9, 8, 10, 11, 12)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Example

4
10

11 7

8
13

1

25612

9

3

T =
(1, 2, 3, 5, 4, 2, 5, 7, 6, 12, 13, 9, 8, 10, 11, 12

︸ ︷︷ ︸

S

, 7, 11, 13, 10, 9, 4, 8, 7, 4, 3, 1)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 6/37



Fleury’s Algorithm

Algorithm

Fleury’s Algorithm to find an Eulerian tour in a connected graph
G = (V ,H) with all vertices of even degree.

Step 1. Start at arbitrary vertex s and insert into trail T arbitrary
edge incident with v.

Step 2. If all edges of G are used in T then STOP.

Step 3. Extend the trail T by such an edge incident with last vertex
of T after removing it the subgraph G consisting of unused edges
and corresponding incident verticesa does not contain:

- two nontrivial components (i.e is disconnected) or
- nontrivial component which does not contain
starting vertex s of trail T .

GOTO Step 2.
♣

aG is a subgraph of G induced by the set of unused eges
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 7/37



Fleury’s Algorithm

Algorithm

Fleury’s Algorithm to find an Eulerian tour in a connected graph
G = (V ,H) with all vertices of even degree.

Step 1. Start at arbitrary vertex s and insert into trail T arbitrary
edge incident with v.

Step 2. If all edges of G are used in T then STOP.

Step 3. Extend the trail T by such an edge incident with last vertex
of T after removing it the subgraph G consisting of unused edges
and corresponding incident verticesa does not contain:

- two nontrivial components (i.e is disconnected) or
- nontrivial component which does not contain
starting vertex s of trail T .

GOTO Step 2.
♣

aG is a subgraph of G induced by the set of unused eges
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 7/37



Fleury’s Algorithm

Algorithm

Fleury’s Algorithm to find an Eulerian tour in a connected graph
G = (V ,H) with all vertices of even degree.

Step 1. Start at arbitrary vertex s and insert into trail T arbitrary
edge incident with v.

Step 2. If all edges of G are used in T then STOP.

Step 3. Extend the trail T by such an edge incident with last vertex
of T after removing it the subgraph G consisting of unused edges
and corresponding incident verticesa does not contain:

- two nontrivial components (i.e is disconnected) or
- nontrivial component which does not contain
starting vertex s of trail T .

GOTO Step 2.
♣

aG is a subgraph of G induced by the set of unused eges
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 7/37



Fleury’s Algorithm

Algorithm

Fleury’s Algorithm to find an Eulerian tour in a connected graph
G = (V ,H) with all vertices of even degree.

Step 1. Start at arbitrary vertex s and insert into trail T arbitrary
edge incident with v.

Step 2. If all edges of G are used in T then STOP.

Step 3. Extend the trail T by such an edge incident with last vertex
of T after removing it the subgraph G consisting of unused edges
and corresponding incident verticesa does not contain:

- two nontrivial components (i.e is disconnected) or
- nontrivial component which does not contain
starting vertex s of trail T .

GOTO Step 2.
♣

aG is a subgraph of G induced by the set of unused eges
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 7/37



Fleury’s Algorithm

Remark
The idea is

”
don’t burn bridges“ so that we can come back to

a starting vertex and traverse remaining edges.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 8/37



Fleury’s Algoritmus – Example

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

2.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

2.

3.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

2.

3. 4.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

2.

3. 4. 5.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

2.

3. 4. 5.

6.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

2.

3. 4. 5.

6.7.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

2.

3. 4. 5.

6.7.

8.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Fleury’s Algoritmus – Example

1.

2.

3. 4. 5.

6.7.

8.

9.

Remark
Checking whether subraph of G induced by the set of unused edges is
connected or whether it contains starting vertex of trial T is intuitive by
manual drawing.
An exact algorithm for this checking should be designed for computer
implementation of Fleury’s algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 9/37



Labyrint algorithm

Algorithm

Labyrint Algorithm to find and Eulerian tour in a connected graph
G = (V ,H) with all vertices of even degree.

Step 1. Start at arbitrary vertex u ∈ V , set S = {(s)}.

Walk S at the beginning consists from single vertex s.

Let vertex w be the last vertex of the walk S.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 10/37



Labyrint Algorithm – continuation

Algorithm ( – continuation)
Step 2.

Let vertex w be the last vertex of the walk S.

Choose a next edge {w , v} fulfilling rules L1, L2 and insert it into
walk S. Mark the direction of edge {w , v} in S.

If the vertex v was not used in S denote the edge {w , v} as the
first access edge - FAE.

Moreover, create so called bacward sequence – order of edges in
which they appaer in the walk S for the second time.

Rules when picking subsequent edge:

(L1): Every edge can be used in one direction only once.

(L2): Precedence of edges:
– till now not used edges
– edges used once
– first access edge (only if there is no other possibility)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 11/37



Labyrint Algorithm – continuation

Algorithm ( – continuation)

Step 3. If all edges are used in S – STOP.
Backward sequence defines searched Eulerian tour.

Step 4. Otherwise set w := v.

Vertex w is last vertex of actual walk S

GOTO Step 2.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 12/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

2.

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

P

2.

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

P

P

2.

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

P

P

2.

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

3.

P

P

2.

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

4.

3.

P

P

2.

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

5.

4.

3.

P

P

2.

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Labyrint algorithm – Example

visited

Edges direction of edge in S vertex

of S {1,2} {1,3} {1,4} {1,5} {2,5} {3,4} 1 2 3 4 5

- •
{5, 1} ⇐ •
{1, 2} ⇒ •
{2, 5} →

{5, 2} ←

{2, 1} ←

{1, 3} ⇒ •
{3, 4} ⇒ •
{4, 1} ←

{1, 4} →

{4, 3} ←

{3, 1} ←

{1, 5} →

6.

5.

4.

3.

P

P

2.

1.

P

P

4

5

1

2

3

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 13/37



Chinese Postman Problem

Chinese Postman Problem

Verbal formulation of the chinese postman problem:
Postman shall go out from his post-office, to go along all streets of his
district and return to the post office in such a way that his travelled
distance is minimal.

Matemathematical formulation of Chinese Postman Problem.
To find the shortest Eulerian walk in a connected edge weighted graph.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 14/37



Chinese Postman Problem

Remark

Model of street network of a postman – a connected edge weighted
graph G = (V ,H, c).

If all vertices of graf G are of even degree then it would suffice to
find an Eulerian tour in G.

If there are vertices of odd degree in G then their number is 2t
(even number).

We can make an Eulerian (multi)graph G from G by adding fictive
edges of the type {odd, odd}. The weight of every such edge will
be set to the distance of corresponding vertices in original graph G.

An Eulerian tour in graph G represents a route of a postman.
Fictive edges represent shortest paths between their endpoints –
postman will traverse these paths idly – without delivering mail.

The less total sum of wieghts of added fictive edges the
better solution.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 15/37



Matchings

Definition

Let G = (V ,H, c) be an edge weighted graph.
A matching in a graph G is a subgraph P of G with all vertices
of degree 1.
The cost of a matching P is the total weight of it’s edges.

A matching P in a graph G is a maximum matching in G if there does
not exist another matching P in G such that P ⊂ P and P 6= P.

A matching P is the most numerous matching in G if P has the
largest number of edges of all matchings in G.

A perfect matching P in a graph G is a matching that is a spanning
subgraph of G (P contains all vertices of G).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 16/37



Matchings

a) b) c)

a) Maximal matching which is neither most numerous nor perfect.
b) Most numerous matching that is not perfect.

c) Perfect matching in K6.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 17/37



Edmonds’s Algorithm

Algorithm
Edmonds’s Algorithm to constructing optimal postman tour in
a connected edge weighted graph G = (V ,H, c).

Step 1. Find all vertices of odd degree in graph G. The number of
such vertices is even – equal to 2t.
Create a complete graph K2t containing all vertices of G having odd
degree. Assign the weight of every edge of K2t equal to the
distance of its endpoints in original graph G.

Step 2. Find a perfect matching in K2t with minimal cost.

Step 3. Edges of that matching add to edge set of original graph
G. The result is (multi)graph G with all vertices of even degree.
Create an Eulerian tour T in (multi)graph G.

Step 4. Replace the matching edges in Eulerian tour T by
corresponing shortest paths in G and mark them as traversed idly
(without delivering mail).

The result is a shortest Eulerian walk in graph G.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 18/37



Edmonds’s Algorithm

Algorithm
Edmonds’s Algorithm to constructing optimal postman tour in
a connected edge weighted graph G = (V ,H, c).

Step 1. Find all vertices of odd degree in graph G. The number of
such vertices is even – equal to 2t.
Create a complete graph K2t containing all vertices of G having odd
degree. Assign the weight of every edge of K2t equal to the
distance of its endpoints in original graph G.

Step 2. Find a perfect matching in K2t with minimal cost.

Step 3. Edges of that matching add to edge set of original graph
G. The result is (multi)graph G with all vertices of even degree.
Create an Eulerian tour T in (multi)graph G.

Step 4. Replace the matching edges in Eulerian tour T by
corresponing shortest paths in G and mark them as traversed idly
(without delivering mail).

The result is a shortest Eulerian walk in graph G.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 18/37



Edmonds’s Algorithm

Algorithm
Edmonds’s Algorithm to constructing optimal postman tour in
a connected edge weighted graph G = (V ,H, c).

Step 1. Find all vertices of odd degree in graph G. The number of
such vertices is even – equal to 2t.
Create a complete graph K2t containing all vertices of G having odd
degree. Assign the weight of every edge of K2t equal to the
distance of its endpoints in original graph G.

Step 2. Find a perfect matching in K2t with minimal cost.

Step 3. Edges of that matching add to edge set of original graph
G. The result is (multi)graph G with all vertices of even degree.
Create an Eulerian tour T in (multi)graph G.

Step 4. Replace the matching edges in Eulerian tour T by
corresponing shortest paths in G and mark them as traversed idly
(without delivering mail).

The result is a shortest Eulerian walk in graph G.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 18/37



Edmonds’s Algorithm

Algorithm
Edmonds’s Algorithm to constructing optimal postman tour in
a connected edge weighted graph G = (V ,H, c).

Step 1. Find all vertices of odd degree in graph G. The number of
such vertices is even – equal to 2t.
Create a complete graph K2t containing all vertices of G having odd
degree. Assign the weight of every edge of K2t equal to the
distance of its endpoints in original graph G.

Step 2. Find a perfect matching in K2t with minimal cost.

Step 3. Edges of that matching add to edge set of original graph
G. The result is (multi)graph G with all vertices of even degree.
Create an Eulerian tour T in (multi)graph G.

Step 4. Replace the matching edges in Eulerian tour T by
corresponing shortest paths in G and mark them as traversed idly
(without delivering mail).

The result is a shortest Eulerian walk in graph G.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 18/37



Edmonds’s Algorithm

c)a) b) d)

Operation of Edmonds’s Algorithm.
a) original graph, vertices of odd degre are illustrated by little squares.

b) Complete graph K2t constructed according to the Step 1. of algorithm
c) Perfect matching in v K2t with minimal cost.

d) Multigraph G created according to the Step 3. of algorithm
where the existence of Eulerian tour is guarranteed.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 19/37



Hamiltonian walk, Hamiltonian cycle

Definition
A Hamiltonian walk in graph G is a walk in G that contains all vertices
of graph G.

Remark
The last definition specifies also Hamiltonian path and Hamiltonian cycle
since they both are special case of Hamiltonian walk.

Definition
A Hamiltonian graph is a graph that contains a Hamiltonian cycle.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 20/37



Hamiltonian walk, Hamiltonian cycle

There does not exist a simple criterion for determining that a graph G is
a Hamiltonian graph.
We have several rough sufficent conditions as:

Theorem

Let G = (V ,H) be a graph with at least 3 vertices. Let

deg(u) + deg(v) ≥ |V |

holds for every two no adjacent vertices u, v.
Then G is a Hamiltonian graph.

Theorem

Let G = (V ,H) be a graph with at least 3 vertices. Let

deg(v) ≥
1

2
.|V |

holds for every vertex v ∈ V .
Then G is a Hamiltonian graph.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 21/37



Travelling Salesman Problem– TSP

Travelling Salesman Problem - TSP

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 22/37



Travelling Salesman Problem – TSP

Verbal definition of TSP is:
Travelling salesman shall visit all his customers and return home in
such a way that his travelled distance is minimal.

Mathematical formulaton of TSP

If the salesman is allowed to visit the same place more times
mathematical formulation of TSP is as follows:

To find the shortest closed Hamiltonian walk in a connected edge
weighted graph G = (V ,H, c).

If visiting of the same place is prohibited we have the following
formulation of TSP:

To find the shortest Hamiltonian cycle in a connected edge

weighted graph G = (V ,H, c).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 23/37



Travelling Salesman Problem– TSP

Remark
In practice there is no reason to prohibit manifold visits of customers.
Moreover, in many real world situations a Hamiltonian cycle does not
even exist. That is why we will focus our attention to constructing
a shortest Hamiltonian walk.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 24/37



Shortest Hamiltonian Walk

20

20

40 10
70

10

50

30

30

40

20

20

90

30 20

90

10

7080

80

30

b)a)

2 3

5

1

3

566

4 41

2

10

There is no Hamiltonian cycle in graph G = (V ,H, c) a).
Since it suffices to find the shortest Hamiltonian walk, we will search for it
like a Hamiltonian cycle in complete auxiliary graph G = (G ,E , d)) (fig. b),

whose edge weight of every edge is equal
to the distance of its end point in original graph G .

Triangular inequality holds in complete graph G i. e.:
∀u, v ,w ∈ V u, v ,w it holds:

d(u, v) ≤ d(u,w) + d(w , v).
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 25/37



Shortest Hamiltonian Cyklus in a Complete Graph with △ inequalit

Every permutation of vertices defines a Hamiltonian cycle in a complete graph
G adn vice versa.

If we fix the first vertices we have (n− 1)! different Hamiltonian cycles in graph
G = (V ,H,C) with n = |V | vertices.

There is no signicantly better way for exact determination of the shortest
Hamiltonian cycle as systematic search of all (n − 1)! permutations.

Computation Time Provided That Search Speed is 109 permutations/sec.

n (n − 1)! seconds minutes days yars

10 3,6E+05 0,36 ms - - -
15 8,7E+10 87,17 1,45 - -
20 1,2E+17 1,2E+08 2000000 1400 3,9
25 6,2E+23 6,2E+14 1,0E+13 7,2E+09 2,0E+07
30 8,8E+30 8,8E+21 1,5E+20 1,0E+17 2,8E+14
35 3,0E+38 3,0E+29 4,9E+27 3,4E+24 9,4E+21
40 2,0E+46 2,0E+37 3,4E+35 2,4E+32 6,5E+29
45 2,7E+54 2,7E+45 4,4E+43 3,1E+40 8,4E+37
50 6,1E+62 6,1E+53 1,0E+52 7,0E+48 1,9E+46

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 26/37



Greedy Algorithm

Corolarry: We have to use algorithms that offer sufficiently good but not
surely exact results – heuristics, suboptimal algorithms.

Algorithm
Greedy Algorithm. Heuristics to find a suboptimal solution of TSP
in a complete graph G = (V ,H, c) with triangular inequality and
with at least 3 vertices.

Step 1. Start at arbitrary vertex and insert the cheapest edge
incident with this vertex together with its second endpoint into
chosen sequence – (future Hamiltonian cycle).

Step 2. If the number of chosen edges is equal to n − 1 then close
cycle. STOP

Step 3. Otherwise choose the cheapest unchosen edgee incident
with the last vertex of till now chosen sequence, which is not
incident with any other vertex of chosen sequence.

Insert this edge together with its second endpoint into chosen
sequence.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 27/37



Greedy algoritmus pre TSP

40 10

20

70

20 10

50
40

90

30
20

10
20

70

90

10
80

1

2 3

4

56
b)a)
30

20

3030

80

2 3

1 4

56

C = (2)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 28/37



Greedy algoritmus pre TSP

40 10

20

70

20 10

50
40

90

30
20

10
20

70

90

10
80

1

2 3

4

56
b)a)
30

20

3030

80

2 3

1 4

56

C = (2, {2, 4}, 4)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 28/37



Greedy algoritmus pre TSP

40 10

20

70

20 10

50
40

90

30
20

10
20

70

90

10
80

1

2 3

4

56
b)a)
30

20

3030

80

2 3

1 4

56

C = (2, {2, 4}, 4, {4, 5}, 5)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 28/37



Greedy algoritmus pre TSP

40 10

20

70

20 10

50
40

90

30
20

10
20

70

90

10
80

1

2 3

4

56
b)a)
30

20

3030

80

2 3

1 4

56

C = (2, {2, 4}, 4, {4, 5}, 5, {5, 6}, 6)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 28/37



Greedy algoritmus pre TSP

40 10

20

70

20 10

50
40

90

30
20

10
20

70

90

10
80

1

2 3

4

56
b)a)
30

20

3030

80

2 3

1 4

56

C = (2, {2, 4}, 4, {4, 5}, 5, {5, 6}, 6, {6, 1}, 1)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 28/37



Greedy algoritmus pre TSP

40 10

20

70

20 10

50
40

90

30
20

10
20

70

90

10
80

1

2 3

4

56
b)a)
30

20

3030

80

2 3

1 4

56

C = (2, {2, 4}, 4, {4, 5}, 5, {5, 6}, 6, {6, 1}, 1, {1, 3}, 3)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 28/37



Greedy algoritmus pre TSP

40 10

20

70

20 10

50
40

90

30
20

10
20

70

90

10
80

1

2 3

4

56
b)a)
30

20

3030

80

2 3

1 4

56

C = (2, {2, 4}, 4, {4, 5}, 5, {5, 6}, 6, {6, 1}, 1, {1, 3}, 3, {3, 2}, 2)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 28/37



Greedy algoritmus pre TSP

40 10

20

70

20 10

50
40

90

30
20

10
20

70

90

10
80

1

2 3

4

56
b)a)
30

20

3030

80

2 3

1 4

56

C = (2, {2, 4}, 4, {4, 5}, 5, {5, 6}, 6, {6, 1}, 1, {1, 3}, 3, {3, 2}, 2)
Now we replace every edge of cycle C by corresponding shortest path in
original graph G .
(2, {2, 4}, 4) → (2, {2, 4}, 4)
(4, {4, 5}, 5) → (4, {4, 5}, 5)
(5, {5, 6}, 6) → (5, {5, 4}, 4, {4, 6}, 6)
(6, {6, 1}, 1) → (6, {6, 4}, 4, {4, 1}, 1)
(1, {1, 3}, 3) → (1, {1, 4}, 4, {4, 3}, 3)
(3, {3, 2}, 2) → (3, {3, 4}, 4, {4, 2}, 2)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 28/37



Double the Spanning Tree Algorithm

Algorithm

Double the Spanning Tree Algorithm. (Kim – 1975). Heuristic to
find a suboptimal solution of TSP in a complete graph
G = (V ,H, c) with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Create a closed walk S in spanning tree K containing every
edge of K exactly two times. (Use Tarry’s algorithm).

Step 3. Create a Hamiltonian cycle from walk S as follows: Follow
the sequence of vertices of S and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of S if
any) and replace the skipped segment by direct edge.

♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 29/37



Double the Spanning Tree Algorithm

Algorithm

Double the Spanning Tree Algorithm. (Kim – 1975). Heuristic to
find a suboptimal solution of TSP in a complete graph
G = (V ,H, c) with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Create a closed walk S in spanning tree K containing every
edge of K exactly two times. (Use Tarry’s algorithm).

Step 3. Create a Hamiltonian cycle from walk S as follows: Follow
the sequence of vertices of S and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of S if
any) and replace the skipped segment by direct edge.

♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 29/37



Double the Spanning Tree Algorithm

Algorithm

Double the Spanning Tree Algorithm. (Kim – 1975). Heuristic to
find a suboptimal solution of TSP in a complete graph
G = (V ,H, c) with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Create a closed walk S in spanning tree K containing every
edge of K exactly two times. (Use Tarry’s algorithm).

Step 3. Create a Hamiltonian cycle from walk S as follows: Follow
the sequence of vertices of S and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of S if
any) and replace the skipped segment by direct edge.

♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 29/37



Double the Spanning Tree Algorithm

Theorem

Let G = (V ,H, c) be a complete graph with triangular inequality. Let
c(DST ) be the length of Hamiltonian cycle obtained by Double the
Spanning Tree Algorithm, leth c(OPT ) be the exact length of shortest
Hamiltonian cycle in graph G.
Then

c(DST )

c(OPT )
< 2.

Moreover, the last estimation cannot be improved – for every ε > 0 there
exists a graph Gε for which it holds

c(DST )

c(OPT )
> 2− ε.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 30/37



Double the Spanning Tree Algorithm – Example

1

7 2

36

45

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 31/37



Double the Spanning Tree Algorithm – Example

1

7 2

36

45

T = (1, {1, 7}, 7, {7, 3}, 3, {3, 2}, 2, {2, 3}, 3, {3, 7}, 7, {7, 1}, 1,

{4, 1}, 4, {4, 1, }, 1, {1, 5}, 5, {5, 6}, 6, {6, 5}, 5, {5, 1}, 1)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 31/37



Double the Spanning Tree Algorithm – Example

1

7 2

36

45

T = (1, {1, 7}, 7, {7, 3}, 3, {3, 2}, 2, {2, 3}, 3, {3, 7}, 7, {7, 1}, 1,

{4, 1}, 4, {4, 1, }, 1, {1, 5}, 5, {5, 6}, 6, {6, 5}, 5, {5, 1}, 1)Shortly
T = (1, 7, 3, 2, 3, 7, 1

︸ ︷︷ ︸

to replace by edge {2, 4}

, 4, 1, 5, 6, 5, 1)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 31/37



Double the Spanning Tree Algorithm – Example

1

7 2

36

45

T = (1, {1, 7}, 7, {7, 3}, 3, {3, 2}, 2, {2, 3}, 3, {3, 7}, 7, {7, 1}, 1,

{4, 1}, 4, {4, 1, }, 1, {1, 5}, 5, {5, 6}, 6, {6, 5}, 5, {5, 1}, 1)Shortly
T = (1, 7, 3, 2, 3, 7, 1

︸ ︷︷ ︸

to replace by edge {2, 4}

, 4, 1, 5, 6, 5, 1)

T = (1, 7, 3, 2, 4, 1, 5, 6, 5, 1)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 31/37



Double the Spanning Tree Algorithm – Example

1

7 2

36

45

T = (1, {1, 7}, 7, {7, 3}, 3, {3, 2}, 2, {2, 3}, 3, {3, 7}, 7, {7, 1}, 1,

{4, 1}, 4, {4, 1, }, 1, {1, 5}, 5, {5, 6}, 6, {6, 5}, 5, {5, 1}, 1)Shortly
T = (1, 7, 3, 2, 3, 7, 1

︸ ︷︷ ︸

to replace by edge {2, 4}

, 4, 1, 5, 6, 5, 1)

T = (1, 7, 3, 2, 4, 1, 5, 6, 5, 1)

T = (1, 7, 3, 2, 4, 5, 6, 5, 1)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 31/37



Double the Spanning Tree Algorithm – Example

1

7 2

36

45

T = (1, {1, 7}, 7, {7, 3}, 3, {3, 2}, 2, {2, 3}, 3, {3, 7}, 7, {7, 1}, 1,

{4, 1}, 4, {4, 1, }, 1, {1, 5}, 5, {5, 6}, 6, {6, 5}, 5, {5, 1}, 1)Shortly
T = (1, 7, 3, 2, 3, 7, 1

︸ ︷︷ ︸

to replace by edge {2, 4}

, 4, 1, 5, 6, 5, 1)

T = (1, 7, 3, 2, 4, 1, 5, 6, 5, 1)

T = (1, 7, 3, 2, 4, 5, 6, 5, 1)

T = (1, 7, 3, 2, 4, 5, 6, 1)
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 31/37



Spanning Tree and Matching Algorithm

Algorithm
Spanning Tree and Matching Algorithm. (Christofides – 1976.) Heuristic to
find a suboptimal solution of TSP in a complete graph G = (V ,H, c)
with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Find all vertices of odd degree in spanning tree K. The number
of such vertices is even – equal to 2t.

Step 3. Create a complete graph K2t with vertex set equal to the set of
all odd degree vertices of K. Set edge weight of every edge of K2t equal
to the weight of this edge in graph G.

Step 4. Find a minimum cost perfect matching in K2t .

Step 5. Add matching edges obtained in Step 4. into edge set of spanning
tree K. The result is (multi)graphf K having all vertices of even degree.

Step 6. Create a Eulerian tour T in (multi)graph K.

Step 7. Create a Hamiltonian cycle from Eulerian tour T as follows:

Follow the sequence of vertices of T and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of T if any)
and replace the skipped segment by direct edge. ♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 32/37



Spanning Tree and Matching Algorithm

Algorithm
Spanning Tree and Matching Algorithm. (Christofides – 1976.) Heuristic to
find a suboptimal solution of TSP in a complete graph G = (V ,H, c)
with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Find all vertices of odd degree in spanning tree K. The number
of such vertices is even – equal to 2t.

Step 3. Create a complete graph K2t with vertex set equal to the set of
all odd degree vertices of K. Set edge weight of every edge of K2t equal
to the weight of this edge in graph G.

Step 4. Find a minimum cost perfect matching in K2t .

Step 5. Add matching edges obtained in Step 4. into edge set of spanning
tree K. The result is (multi)graphf K having all vertices of even degree.

Step 6. Create a Eulerian tour T in (multi)graph K.

Step 7. Create a Hamiltonian cycle from Eulerian tour T as follows:

Follow the sequence of vertices of T and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of T if any)
and replace the skipped segment by direct edge. ♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 32/37



Spanning Tree and Matching Algorithm

Algorithm
Spanning Tree and Matching Algorithm. (Christofides – 1976.) Heuristic to
find a suboptimal solution of TSP in a complete graph G = (V ,H, c)
with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Find all vertices of odd degree in spanning tree K. The number
of such vertices is even – equal to 2t.

Step 3. Create a complete graph K2t with vertex set equal to the set of
all odd degree vertices of K. Set edge weight of every edge of K2t equal
to the weight of this edge in graph G.

Step 4. Find a minimum cost perfect matching in K2t .

Step 5. Add matching edges obtained in Step 4. into edge set of spanning
tree K. The result is (multi)graphf K having all vertices of even degree.

Step 6. Create a Eulerian tour T in (multi)graph K.

Step 7. Create a Hamiltonian cycle from Eulerian tour T as follows:

Follow the sequence of vertices of T and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of T if any)
and replace the skipped segment by direct edge. ♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 32/37



Spanning Tree and Matching Algorithm

Algorithm
Spanning Tree and Matching Algorithm. (Christofides – 1976.) Heuristic to
find a suboptimal solution of TSP in a complete graph G = (V ,H, c)
with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Find all vertices of odd degree in spanning tree K. The number
of such vertices is even – equal to 2t.

Step 3. Create a complete graph K2t with vertex set equal to the set of
all odd degree vertices of K. Set edge weight of every edge of K2t equal
to the weight of this edge in graph G.

Step 4. Find a minimum cost perfect matching in K2t .

Step 5. Add matching edges obtained in Step 4. into edge set of spanning
tree K. The result is (multi)graphf K having all vertices of even degree.

Step 6. Create a Eulerian tour T in (multi)graph K.

Step 7. Create a Hamiltonian cycle from Eulerian tour T as follows:

Follow the sequence of vertices of T and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of T if any)
and replace the skipped segment by direct edge. ♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 32/37



Spanning Tree and Matching Algorithm

Algorithm
Spanning Tree and Matching Algorithm. (Christofides – 1976.) Heuristic to
find a suboptimal solution of TSP in a complete graph G = (V ,H, c)
with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Find all vertices of odd degree in spanning tree K. The number
of such vertices is even – equal to 2t.

Step 3. Create a complete graph K2t with vertex set equal to the set of
all odd degree vertices of K. Set edge weight of every edge of K2t equal
to the weight of this edge in graph G.

Step 4. Find a minimum cost perfect matching in K2t .

Step 5. Add matching edges obtained in Step 4. into edge set of spanning
tree K. The result is (multi)graphf K having all vertices of even degree.

Step 6. Create a Eulerian tour T in (multi)graph K.

Step 7. Create a Hamiltonian cycle from Eulerian tour T as follows:

Follow the sequence of vertices of T and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of T if any)
and replace the skipped segment by direct edge. ♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 32/37



Spanning Tree and Matching Algorithm

Algorithm
Spanning Tree and Matching Algorithm. (Christofides – 1976.) Heuristic to
find a suboptimal solution of TSP in a complete graph G = (V ,H, c)
with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Find all vertices of odd degree in spanning tree K. The number
of such vertices is even – equal to 2t.

Step 3. Create a complete graph K2t with vertex set equal to the set of
all odd degree vertices of K. Set edge weight of every edge of K2t equal
to the weight of this edge in graph G.

Step 4. Find a minimum cost perfect matching in K2t .

Step 5. Add matching edges obtained in Step 4. into edge set of spanning
tree K. The result is (multi)graphf K having all vertices of even degree.

Step 6. Create a Eulerian tour T in (multi)graph K.

Step 7. Create a Hamiltonian cycle from Eulerian tour T as follows:

Follow the sequence of vertices of T and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of T if any)
and replace the skipped segment by direct edge. ♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 32/37



Spanning Tree and Matching Algorithm

Algorithm
Spanning Tree and Matching Algorithm. (Christofides – 1976.) Heuristic to
find a suboptimal solution of TSP in a complete graph G = (V ,H, c)
with triangular inequality.

Step 1. Find a minimum spanning tree K in graph G.

Step 2. Find all vertices of odd degree in spanning tree K. The number
of such vertices is even – equal to 2t.

Step 3. Create a complete graph K2t with vertex set equal to the set of
all odd degree vertices of K. Set edge weight of every edge of K2t equal
to the weight of this edge in graph G.

Step 4. Find a minimum cost perfect matching in K2t .

Step 5. Add matching edges obtained in Step 4. into edge set of spanning
tree K. The result is (multi)graphf K having all vertices of even degree.

Step 6. Create a Eulerian tour T in (multi)graph K.

Step 7. Create a Hamiltonian cycle from Eulerian tour T as follows:

Follow the sequence of vertices of T and if you find a visited vertex skip
this vertex to the next unvisited vertex (or to the last vertex of T if any)
and replace the skipped segment by direct edge. ♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 32/37



Spanning Tree and Matching Algorithm

Theorem

Let G = (V ,H, c) be a complete graph with triangular inequality. Let
c(STMA) be the length of Hamiltonian cycle obtained by Spanning Tree
and Matching Algorithm, let c(OPT ) be the exact length of shortest
Hamiltonian cycle in graph G.
Then

c(STMA)

c(OPT )
<

3

2
.

Moreover, the last estimation cannot be improved – for every ε > 0 there
exists a graph Gε for which it holds

c(STMA)

c(OPT )
>

3

2
− ε.

Remark
We do not know a polynomial algorithm ALG which would guarantee
better ratio c(ALG )/c(OPT ) then 3/2.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 33/37



Inserting Heuristics for TSP

Algorithm
Inserting Heuristics to find a suboptimal solution of TSP in a complete
graph G = (V ,H, c) with triangular inequality.

Step 1. Choose an edge h = {u, v} with least weight.
Find vertex w ∈ V , for which is the sum c{u,w}+ c{w , v} minimal.
Create cycle C = (u, {u,w},w , {w , v}, v , {v , u}, u).

Step 2. If cycle C contains all vertices of graph G then STOP.
Otherwise continue in Step 3.

Step 3. Calculate

z(h) = min{c{u,w}+ c{w , v}− c{u, v} | w ∈ V − C}. (1)

for every edge h = {u, v} of cycle C.

Choose the edge h = {u, v} with minimal value z(h) and vertex w, for
which occured minimum in (1).

Create acycle C ′ by replacing the edgge {u, v} by two edges {u,w},
{w , v}.
Set C := C ′.

GOTO Step 2. ♣
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 34/37



Inserting Heuristics for TSP

Algorithm
Inserting Heuristics to find a suboptimal solution of TSP in a complete
graph G = (V ,H, c) with triangular inequality.

Step 1. Choose an edge h = {u, v} with least weight.
Find vertex w ∈ V , for which is the sum c{u,w}+ c{w , v} minimal.
Create cycle C = (u, {u,w},w , {w , v}, v , {v , u}, u).

Step 2. If cycle C contains all vertices of graph G then STOP.
Otherwise continue in Step 3.

Step 3. Calculate

z(h) = min{c{u,w}+ c{w , v}− c{u, v} | w ∈ V − C}. (1)

for every edge h = {u, v} of cycle C.

Choose the edge h = {u, v} with minimal value z(h) and vertex w, for
which occured minimum in (1).

Create acycle C ′ by replacing the edgge {u, v} by two edges {u,w},
{w , v}.
Set C := C ′.

GOTO Step 2. ♣
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 34/37



Inserting Heuristics for TSP

Algorithm
Inserting Heuristics to find a suboptimal solution of TSP in a complete
graph G = (V ,H, c) with triangular inequality.

Step 1. Choose an edge h = {u, v} with least weight.
Find vertex w ∈ V , for which is the sum c{u,w}+ c{w , v} minimal.
Create cycle C = (u, {u,w},w , {w , v}, v , {v , u}, u).

Step 2. If cycle C contains all vertices of graph G then STOP.
Otherwise continue in Step 3.

Step 3. Calculate

z(h) = min{c{u,w}+ c{w , v}− c{u, v} | w ∈ V − C}. (1)

for every edge h = {u, v} of cycle C.

Choose the edge h = {u, v} with minimal value z(h) and vertex w, for
which occured minimum in (1).

Create acycle C ′ by replacing the edgge {u, v} by two edges {u,w},
{w , v}.
Set C := C ′.

GOTO Step 2. ♣
Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 34/37



Inserting Heuristics for TSP

1

7 2

36

45

z(h) = c{6, 5}+ c{5, 3} − c{6, 3}
z(h) = min{z(h), c{6, 4}+ c{4, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 2}+ c{2, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 7}+ c{7, 3} − c{6, 3}}

z(h) = min







c{6, 5}+ c{5, 3} − c{6, 3},

c{6, 4}+ c{4, 3} − c{6, 3},

c{6, 2}+ c{2, 3} − c{6, 3},

c{6, 7}+ c{7, 3} − c{6, 3}







Remark
Algorithm Inserting Heuristics for TSP creates cycles step by step so that
it inserts that vertex into contemporary cycle which extends the length of
cycle as little as possible.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 35/37



Inserting Heuristics for TSP

1

7 2

36

45

z(h) = c{6, 5}+ c{5, 3} − c{6, 3}
z(h) = min{z(h), c{6, 4}+ c{4, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 2}+ c{2, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 7}+ c{7, 3} − c{6, 3}}

z(h) = min







c{6, 5}+ c{5, 3} − c{6, 3},

c{6, 4}+ c{4, 3} − c{6, 3},

c{6, 2}+ c{2, 3} − c{6, 3},

c{6, 7}+ c{7, 3} − c{6, 3}







Remark
Algorithm Inserting Heuristics for TSP creates cycles step by step so that
it inserts that vertex into contemporary cycle which extends the length of
cycle as little as possible.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 35/37



Inserting Heuristics for TSP

1

7 2

36

45

z(h) = c{6, 5}+ c{5, 3} − c{6, 3}
z(h) = min{z(h), c{6, 4}+ c{4, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 2}+ c{2, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 7}+ c{7, 3} − c{6, 3}}

z(h) = min







c{6, 5}+ c{5, 3} − c{6, 3},

c{6, 4}+ c{4, 3} − c{6, 3},

c{6, 2}+ c{2, 3} − c{6, 3},

c{6, 7}+ c{7, 3} − c{6, 3}







Remark
Algorithm Inserting Heuristics for TSP creates cycles step by step so that
it inserts that vertex into contemporary cycle which extends the length of
cycle as little as possible.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 35/37



Inserting Heuristics for TSP

1

7 2

36

45

z(h) = c{6, 5}+ c{5, 3} − c{6, 3}
z(h) = min{z(h), c{6, 4}+ c{4, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 2}+ c{2, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 7}+ c{7, 3} − c{6, 3}}

z(h) = min







c{6, 5}+ c{5, 3} − c{6, 3},

c{6, 4}+ c{4, 3} − c{6, 3},

c{6, 2}+ c{2, 3} − c{6, 3},

c{6, 7}+ c{7, 3} − c{6, 3}







Remark
Algorithm Inserting Heuristics for TSP creates cycles step by step so that
it inserts that vertex into contemporary cycle which extends the length of
cycle as little as possible.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 35/37



Inserting Heuristics for TSP

1

7 2

36

45

z(h) = c{6, 5}+ c{5, 3} − c{6, 3}
z(h) = min{z(h), c{6, 4}+ c{4, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 2}+ c{2, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 7}+ c{7, 3} − c{6, 3}}

z(h) = min







c{6, 5}+ c{5, 3} − c{6, 3},

c{6, 4}+ c{4, 3} − c{6, 3},

c{6, 2}+ c{2, 3} − c{6, 3},

c{6, 7}+ c{7, 3} − c{6, 3}







Remark
Algorithm Inserting Heuristics for TSP creates cycles step by step so that
it inserts that vertex into contemporary cycle which extends the length of
cycle as little as possible.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 35/37



Inserting Heuristics for TSP

1

7 2

36

45

z(h) = c{6, 5}+ c{5, 3} − c{6, 3}
z(h) = min{z(h), c{6, 4}+ c{4, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 2}+ c{2, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 7}+ c{7, 3} − c{6, 3}}

z(h) = min







c{6, 5}+ c{5, 3} − c{6, 3},

c{6, 4}+ c{4, 3} − c{6, 3},

c{6, 2}+ c{2, 3} − c{6, 3},

c{6, 7}+ c{7, 3} − c{6, 3}







Remark
Algorithm Inserting Heuristics for TSP creates cycles step by step so that
it inserts that vertex into contemporary cycle which extends the length of
cycle as little as possible.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 35/37



Inserting Heuristics for TSP

1

7 2

36

45

z(h) = c{6, 5}+ c{5, 3} − c{6, 3}
z(h) = min{z(h), c{6, 4}+ c{4, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 2}+ c{2, 3} − c{6, 3}}
z(h) = min{z(h), c{6, 7}+ c{7, 3} − c{6, 3}}

z(h) = min







c{6, 5}+ c{5, 3} − c{6, 3},

c{6, 4}+ c{4, 3} − c{6, 3},

c{6, 2}+ c{2, 3} − c{6, 3},

c{6, 7}+ c{7, 3} − c{6, 3}







Remark
Algorithm Inserting Heuristics for TSP creates cycles step by step so that
it inserts that vertex into contemporary cycle which extends the length of
cycle as little as possible.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 35/37



Neighbourhood Search Algorithm

Algorithm
Neighbourhood Search Algorithm.
We can define a neighourhood to every solution of TSP.
The neighbourhood O(C ) of a Hamiltonian cycle C can be defined as the
set of Hamiltonian cycles obtained from cycle C by means of several
simple operations.
Denote by c(C ) the length of Hamiltonian cycle C .

Step 1. Take arbitrary Hamiltonian cycle C as starting solution.
(Starting cycle can be obtained as a result of a heuristics or can be
generated by a pseudorandom generator).

Step 2. Search for C ′ ∈ O(C ) with c(C ′) < c(C ).

If for all C ′ ∈ O(C ) c(C ′) ≥ c(C ), STOP, C is suboptimal
Hamiltonian cycle.

Otherwise continye by Step 3.

Step 3. Take C ′ ∈ O(C ) such that c(C ′) < c(C ) and set C := C ′.

Goto Step 2.
♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 36/37



Neighbourhood Search Algorithm

Algorithm
Neighbourhood Search Algorithm.
We can define a neighourhood to every solution of TSP.
The neighbourhood O(C ) of a Hamiltonian cycle C can be defined as the
set of Hamiltonian cycles obtained from cycle C by means of several
simple operations.
Denote by c(C ) the length of Hamiltonian cycle C .

Step 1. Take arbitrary Hamiltonian cycle C as starting solution.
(Starting cycle can be obtained as a result of a heuristics or can be
generated by a pseudorandom generator).

Step 2. Search for C ′ ∈ O(C ) with c(C ′) < c(C ).

If for all C ′ ∈ O(C ) c(C ′) ≥ c(C ), STOP, C is suboptimal
Hamiltonian cycle.

Otherwise continye by Step 3.

Step 3. Take C ′ ∈ O(C ) such that c(C ′) < c(C ) and set C := C ′.

Goto Step 2.
♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 36/37



Neighbourhood Search Algorithm

Algorithm
Neighbourhood Search Algorithm.
We can define a neighourhood to every solution of TSP.
The neighbourhood O(C ) of a Hamiltonian cycle C can be defined as the
set of Hamiltonian cycles obtained from cycle C by means of several
simple operations.
Denote by c(C ) the length of Hamiltonian cycle C .

Step 1. Take arbitrary Hamiltonian cycle C as starting solution.
(Starting cycle can be obtained as a result of a heuristics or can be
generated by a pseudorandom generator).

Step 2. Search for C ′ ∈ O(C ) with c(C ′) < c(C ).

If for all C ′ ∈ O(C ) c(C ′) ≥ c(C ), STOP, C is suboptimal
Hamiltonian cycle.

Otherwise continye by Step 3.

Step 3. Take C ′ ∈ O(C ) such that c(C ′) < c(C ) and set C := C ′.

Goto Step 2.
♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 36/37



Neighbourhood Search Algorithm

Cycle C and several elemenmts of its neighbourhood.

Danger of Neighbourhood Search Algorithm:
Algorithm gets stuck in a local minimum – in such solution which has no
better solution in its neighbourhood.

Treatment:
Multifold runs of algorithm with different initial solutions.

Sophisticated heuristic algorithms.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 37/37



Neighbourhood Search Algorithm

Cycle C and several elemenmts of its neighbourhood.

Danger of Neighbourhood Search Algorithm:
Algorithm gets stuck in a local minimum – in such solution which has no
better solution in its neighbourhood.

Treatment:
Multifold runs of algorithm with different initial solutions.

Sophisticated heuristic algorithms.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Optimal Graph Traversals 37/37


