CONNECTIONS BETWEEN THE GRAPH ISOMORPHISM AND THE NUMBER OF WALKS IN GRAPHS

Peter Czimmermann

Department of Mathematical Methods, Faculty of Management Science and Informatics, University of Žilina Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ are isomorphic $(G \cong H)$, if there is a bijection $f : V_G \longrightarrow V_H$ such, that for $\forall u, v \in V_G$: $\{u, v\} \in E_G \iff \{f(u), f(v)\} \in E_H$.

Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ are isomorphic $(G \cong H)$, if there is a bijection $f : V_G \longrightarrow V_H$ such, that for $\forall u, v \in V_G$: $\{u, v\} \in E_G \iff \{f(u), f(v)\} \in E_H$.

The graph isomorphism problem is the problem to decide whether two given graphs are isomorphic or not. Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ are isomorphic $(G \cong H)$, if there is a bijection $f : V_G \longrightarrow V_H$ such, that for $\forall u, v \in V_G$: $\{u, v\} \in E_G \iff \{f(u), f(v)\} \in E_H$.

The graph isomorphism problem is the problem to decide whether two given graphs are isomorphic or not.

Let the graphs G = (V(G), E(G)) and H = (V(H), E(H))with adjacency matrices $A = (a_{i,j})$ and $B = (b_{i,j})$ be given (where $V(G) = \{v_1, \ldots, v_n\}, V(H) = \{u_1, \ldots, u_n\}$).

Let $a_{ij}^{(k)}$ be the number of walks of lenght k from v_i to v_j . $a_{ij}^{(k)} = \sum_{s=1}^n l_{i,s} \cdot l_{j,s} \cdot \lambda_s^k$

w-algorithm

$$v_{i} \longrightarrow V_{i}, u_{i} \longrightarrow U_{i}$$

$$V_{1} = \{s_{11}, s_{12}, s_{13}, s_{14}\}, U_{1} = \{r_{11}, r_{12}, r_{13}, r_{14}\} = U_{2} = U_{3} = U_{4}$$

$$s_{11} = (1, 0, 2, 2, ...), s_{12} = (0, 0, 1, 1, ...),$$

$$s_{13} = (0, 1, 1, 3, ...), s_{14} = (0, 1, 1, 4, ...),$$

$$r_{11} = (1, 0, 2, 0, ...), r_{12} = (0, 1, 0, 4, ...),$$

$$r_{13} = (0, 1, 0, 4, ...), r_{14} = (0, 0, 2, 0, ...).$$

The Walk Algorithm

 $v_i \longrightarrow V_i = \{s_{i1}, \dots, s_{in}\}, u_i \longrightarrow U_i = \{r_{i1}, \dots, r_{in}\},\$ where $s_{ij} = \{a_{ij}^{(k)}\}_{k=0}^q$ and $r_{ij} = \{b_{ij}^{(k)}\}_{k=0}^q$ (q is the number of distinct non-zero eigenvalues of graphs G and H)

The Walk Algorithm

 $v_i \longrightarrow V_i = \{s_{i1}, \dots, s_{in}\}, u_i \longrightarrow U_i = \{r_{i1}, \dots, r_{in}\},\$ where $s_{ij} = \{a_{ij}^{(k)}\}_{k=0}^q$ and $r_{ij} = \{b_{ij}^{(k)}\}_{k=0}^q$ (q is the number of distinct non-zero eigenvalues of graphs G and H)

w-algorithm

- generating sets V_1, \ldots, V_n and U_1, \ldots, U_n .
- finding a bijection $f: V(G_1) \longrightarrow V(G_2)$ for which the following condition holds: if $u_j = f(v_i)$ then $V_i = U_j$

The Walk Algorithm

 $v_i \longrightarrow V_i = \{s_{i1}, \dots, s_{in}\}, u_i \longrightarrow U_i = \{r_{i1}, \dots, r_{in}\},\$ where $s_{ij} = \{a_{ij}^{(k)}\}_{k=0}^q$ and $r_{ij} = \{b_{ij}^{(k)}\}_{k=0}^q$ (q is the number of distinct non-zero eigenvalues of graphs G and H)

w-algorithm

- generating sets V_1, \ldots, V_n and U_1, \ldots, U_n .
- finding a bijection $f: V(G_1) \longrightarrow V(G_2)$ for which the following condition holds: if $u_j = f(v_i)$ then $V_i = U_j$

The complexity of the algorithm is $O(n^5)$.

Theorem 1

If two graphs G and H are not cospectral then $G \nsim_w H$.

Theorem 1 If two graphs *G* and *H* are not cospectral then $G \nsim_w H$. **Theorem 2** If *G* and *H* have only simple eigenvalues then $G \nsim_w H$.

Theorem 1 If two graphs *G* and *H* are not cospectral then $G \nsim_w H$. **Theorem 2** If *G* and *H* have only simple eigenvalues then $G \nsim_w H$. **Theorem 3** If *G* and *H* have different angle matrices then $G \nsim_w H$.

Angle matrix

$$e_1 \dots e_n$$

$$\varepsilon(\mu_1) \quad \alpha_{11} \dots \quad \alpha_{1n}$$

$$\vdots \quad \ddots \quad \vdots$$

$$\varepsilon(\mu_k) \quad \alpha_{k1} \dots \quad \alpha_{kn}$$

$$\alpha_{i,j} = \cos \measuredangle (\varepsilon(\mu_i), e_j)$$

Theorem 4

If *G* and *H* are strongly regular graphs with the same parameters then $G \sim_w H$.

Theorem 4

If *G* and *H* are strongly regular graphs with the same parameters then $G \sim_w H$.

Definition.

A strongly regular graph (SRG) with parameters (n, k, b, c) is a regular graph with n vertices, every vertex has degree k, every pair of adjacent vertices has b common neighbours and every pair of distinct nonadjacent vertices has ccommon neighbours.

The Ulam graph reconstruction

Conjecture:

If *G* and *H* are counterexamples for Ulam reconstruction conjecture then $G \sim_w H$.

The Ulam graph reconstruction

Conjecture:

If G and H are counterexamples for Ulam reconstruction conjecture then $G \sim_w H$.

It is known that $w_i^{(k)} = \sum_{j=1}^n a_{ij}^{(k)}$ and $a_{ii}^{(k)}$ are reconstructible for $\forall i \in \{1, \dots, n\}$.

Is $a_{ij}^{(k)}$ reconstructible for $i \neq j$?

Improvement of the w-algorithm

Local complement $\sigma_v(G)$ of G at vertex v (A. Bouchet):

Improvement of the w-algorithm

Local complement $\sigma_v(G)$ of G at vertex v (A. Bouchet):

 $G \longrightarrow \sigma_{v_1}(G), \dots, \sigma_{v_n}(G)$ $H \longrightarrow \sigma_{u_1}(H), \dots, \sigma_{u_n}(H)$

The complexity of the improved algorithm is $O(n^7)$.