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DIFFERENTIAL EVOLUTION FOR SMALL TSPs WITH 

CONSTRAINTS

Štefan Peško1

Summary: This paper presents evolution algorithm for solving small (up to 32 
nodes) traveling salesman problems with constraints. This new differential 
evolution algorithm with only two parameters - the size of the population and the 
size of the generations use the Lehmer code of the permutation for the 
representation of populations. Experience with  small instances of TSP with time 
windows and deadline TSP are discussed. 
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1 Introduction

The Travelling Salesman Problem (TSP) is the search for the shortest tour that 
visits a given set of nodes exactly once. The TSP is one of the oldest optimization 
problem since TSPs are frequent components of optimization problems. 

As noted in [1] the existence of exchange neighbourhood structures of TSP 
provides very good heuristics, the existence of various relaxations of the TSP 
provides very precise lower bounds and structure of TSP polytope can be exploited 
with powerful branch and cut method solving problems as large as 6000 nodes.

Why are then small TSPs interesting? TSPs are often modeled in the real 
vehicle routing problems (VRP), which could be seen as multiple TSP when one 
has to find a tour for a vehicle such that all nodes are visited by one tour. However 
even though the size of a VRP may be very large, the number of visits that a vehicle 
can make by one trip is bounded by capacity of vehicle or legal constrains to 
relative small number. In the case of an insertion heuristics using an exact 
algorithm for the small TSP instead of a local optimization heuristics translated into 
a global saves of 1%. On the other hand, one running of the VRP for 1000 nodes 
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may translate into 10000 running of the subproblems and thus  to solve small TSPs 
efficiently is important.

The key requirement for resolution of small TSPs is flexibility -- the ability to 
solve problems with side constraints. One can add time windows to TSP nodes that 
indicate a interval in which the node must be visited. Other instances include 
changing travel time between one or many time windows. Interesting case is 
probabilistic TSP [2] where nodes are visited with given probability.

2 TSP with constraints

The TSP with constraints can be stated  in simple terms: Given an real (n+1) × 
(n+1) distance matrix D=(dij), find a permutation π of the set N={1,2,…,n} that 
minimise the function
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where m(π) is measure of infeasibility of permutation π considering the same type 
of the side constraints and K is positive penalty constant. The size of the TSP with
constraints we define equal n+1. The travelling salesman tour (TSP tour) is here in 
the form of the cycle 0→π(1)→π(2)→…→π(n)→0 where π(k) is kth visited node in 
this tour from the start node 0. Note that for the feasible permutation π we define 
m(π)=0.

Example 1.: For the instance of the TSP with time windows (TSPTW) intervals 
[τi

R,τi
D] are given for nodes i from N where τi

R is release time and  τi
D is deadlines

time. The distance dij represents sum of the minimum time of the trip from node i to 
node j and the processing time in node j. The TSPTW tour is feasible (in the simple 
case) if each arrival ti  is in interval [τi

R,τi
D]. Formally the TSPTW tour is feasible if 

we find a solution ti of following conditions:
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Then we can define the measure of infeasibility m(π) of the TSPTW tour as a 
minimum total time out of constraints
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Example 2.: For the instance of the deadline TSP (DTSP) only deadlines τi
D

for each visited node i from N and the start time τ0 for the start node 0 are given. 
The distance dij is interpreted as for the TSPTW. The DTSP tour is feasible if each 
arrival ti  to node i is possible before their deadline τi

D.  The DTSP is special case 
of the TSPTW when τi

R = τ0.

3 Lehmer code

The set of all permutation of the set N we note Sn. In this paper we offer an 
algorithm where a permutation π = < π(1), π(2),…, π(n) > is represented via its 
Lehmer code L(π).

General works in discrete mathematics and theoretical computer science deal 
with effective ways to represent permutation . A pioneer of this matter is Lehmer 
[3] who associates  Sn and  Ln, where Ln is subset of {0,1,….,n-1}n. There are 
several ways to establish this one-to-one correspondence. The most classical of 
them is following: The Lehmer code of the permutation π  is a sequence of the 
numbers

  ,})()(:{)(,)(),...(),()( 21 ijijllllL in        (5)

where li(π) is the number of entries to the right of π(i), which are smaller. It is not 
difficult to see how π can be reconstructed from the code L(π): 
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with respect to the natural order of the sets Nk.. 

Example 3.: From definition (5) we have L(<4,6,2,5,3,1,8,7>) = (3,4,1,2,0,1,0).
We show that L-1((3,4,1,2,1,0,1,0).) = (<4,6,2,5,3,1,8,7>).

π(1)=N1[3+1]=4, N1={1,2,3,4,5,6,7,8}, π(2)=N2[4+1]=6, N2={1,2,3,5,6,7,8}, 

π(3)=N3[1+1]=2, N3={1,2,3,5,7,8},       π(4)=N4[2+1]=5, N4={1,3,5,7,8}, 



University of Pardubice, Jan Perner Transport Faculty

π(5)=N5[1+1]=3, N5={1,3,7,8},              π(6)=N6[0+1]=1, N6={1,7,8}, 

π(7)=N7[1+1]=8, N7={7,8},                    π(8)=N8[0+1]=5, N4={7}. 

The Lehmer code establishes a bijection between  Sn and the set of 
sequences Ln. Now we can define operations   with permutations via the Lehmer 
code. Let π and ψ are in Sn with the Lehmer codes L(π) and L(ψ). Then we define -
for our algorithm – permutations
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4 Differential evolution

Differential evolution (DE) [4] is a new heuristical approach for minimising real-
valued multimodal objective functions. In DE algorithm is a population based on 
algorithm like genetic algorithm using the same operators; crossover, mutation and 
selection. The main difference in constructing better solution is that genetic 
algorithm rely on crossover while DE relays on mutation operation. In our DE 
algorithm no crossover is used.

We now describe our version of the DE algorithm for the TSPs with 
constraints.The goal is to find π* = argmin{c(π): π in Sn}.The DE works with two 
populations P and M of size M. For an old population P={ π1, π2,,…,πM } a mutant 
population M={ μ1, μ2,,…,μM } is generated by adding the difference between two 
elements of P and third element of P according to the rule

 ,)()),((),((minarg eeyxxyxt ccc          (6)

where x,y,z are integers taken at random from the set {1,2,…,M}, mutually different 
and different from running index t. The random permutation πe has Lehmer code 
L(πe) = (rand(n),rand(n-1),…,rand(2),0). We assume a uniform probability 
distribution function rand(k) for numbers from the set  {0,1,\dots,k-1}.

The new population is created by replacing some element of the old P to 
better element of the mutant population. More formally the DE algorithm is writen 
on the figure 1 as a function DEtsp().
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            Figure 1: DE algorithm

Function DEtsp() has two fixed parameters size of the population 
(size_pop) and the size of the generations (size_gen) and return the best solution of 
the last generation πDE. The initial population is chosen randomly. The Lehmer 
codes are used in calculation of permutations of mutant population defined by 
relation (6).

5 Experimental results

Presented DE algorithm was implemented in Python 2.3+. The corresponding 
program was tested on the small instances of DTSP and TSPTW from selected 
instances for asymmetric TSPTW [5]. The symmetric instances of the problems  
(with symmetric distance matrix D’ are generated by a simple rule from the 
distance matrix D of asymmetric instances via rule dij' = min(dij,dji).

The results of experiment with the size of the population size_pop =2. n, size 
of the generations size_gen =1000. n and penalty constant K=n.max{cij} are 
presented for the asymmetric and the symmetric instances of the DTSP and and for 
the TSPTW in Table1.
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           Table1.: Rune time of the DE algprithm (*optimal solution)

Instances 
[5]

Size of 
TSP

DTSP 
symmetric

DTSP 
asymmetric

TSPTW 
symetric

TSPTW 
asymmetric

rbg10a 11 54s 43s 123s 107s*
rbg017 18 96s 87s 102s 203s
rbg021 22 128s 111s 256s 245s*
rbg27 28 468s 438s 558s 561s*
rbg031a 32 602s 538s 668s 628s*

The first result is that DE solve a small TSP with constraints can be very 
robust and efficient manner.
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