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General Principle of Symmetric Cryptography

1 A and B make an agreement about cryptosystem

2 A and B make an agreement about key K

3 A (resp. B) encipheres a plaintext x as y = EK (x)

4 B (resp. A) decipheres a ciphertext y as x = DK (y)
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Feistel ciphers

A Feistel cipher is a structure used in the construction of
symmetric block ciphers, named after the German-born physicist
and cryptographer Horst Feistel.
A large proportion of block ciphers use the Feistel scheme e.g.
Ameican DES and Russian GOST.

Feistel cipher enciphers a block of plaintext. A block should to
have an even number of bits since it will be divided into two parts
with the same number of bits.

A Feistel network is an iterated cipher with an internal function
called a round function.

A round function processes input left and right part of enciphered
text into new output left and right part which are used as input
parts in subsequent round.
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Round Function of Feistel Cipher

Block is divided ito two parts – left Li and right Ri .
Every round makes use of its round key Ki , which enters along
with i-th right part into a round function f .
Round function f is the same for all rounds

R(i)L(i)

L(i+1) R(i+1)

f(R(i),K(i))
K(i)

One round makes:

Ri+1 = Li ⊕ f (Ri ,Ki )

Li+1 = Ri

Notice that output left part L(i + 1) of a round is a copy of input
right part R(i).
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Deciphering

f(R(i),K(i))
K(i)

L(i) R(i)

L(i+1)

L(i+1)

L(i+1)=R(i)R(i+1)

R(i+1)

    X

K(i)
f(L(i+1),K(i))

Let us calculate X .

X = Ri+1
︸︷︷︸

=Li⊕f (Ri ,Ki )

⊕ f (Li+1
︸︷︷︸

=Ri

,Ki ) = Li⊕ f (Ri ,Ki )⊕ f (Ri ,Ki )
︸ ︷︷ ︸

=0

= Li

Colorary: If a round alorithm uses round key Ki , and is applied with Li+1

on the right input and Ri+1 on the left input, then we get on its left
output an right output orinal Li a Ri .
The same round algorithm with swapped left and right sides can be used
as an inverse function.
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Feistel Network

K1

K2

K3

K4

Kn

Feistel network is an iterated multifod
repeating of round keys every one with
another round key K1,K2, . . . ,Kn.

Deciphering is executed with the same
network, applicated on ciphertext with
swapped left and right part and inverse
order of round keys Kn,Kn−1, . . . ,K1.

Important: Just described inverse
mechanism does not depend on the type of
function f (Ri ,Ki ).

However, function f (Ri ,Ki ) significantly

affects cryptographic properties of

Feistel network.
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DES – Data Encryption Standard

IP

x

K1

K2

K16

y=E(K,x)

Feistel network

   16 rounds

IP−1

Deigned in IBM, published in 1975

Block cipher – uses 64-bit block of
plaintext

Uses 56-bit key

Type – a Feistel network with 16
rounds and with input and output
permutation

IP – input permutation

IP−1 – output permutation

Input and output permutation have no
influence on security of cryptosystem.
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DES – Input and Output Permutation

Table 12.1 Initial Permutation

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

Table 12.8 Final Permutation

40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25
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DES – Function f in DES

C1 C2 C3 C4 C5 C6 C7 C8

Ri
32 bitov

8x4 bity

P

f(Ri,Ki)

Ki

48 bitov

48 bitov

48 bitov

B4 B5 B6 B7 B8B1 B2 B3
8x6 bitov

S1 S2 S3 S4 S5 S6 S7 S8

E
48 bitov
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DES – Expansion Operation

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

28 1

32313029

3231302917121332

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16895 4
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DES – Function f in DES

C1 C2 C3 C4 C5 C6 C7 C8

Ri
32 bitov

8x4 bity

P

f(Ri,Ki)

Ki

48 bitov

48 bitov

48 bitov

B4 B5 B6 B7 B8B1 B2 B3
8x6 bitov

S1 S2 S3 S4 S5 S6 S7 S8

E
48 bitov
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DES – Using S-boxes

C1 C2 C3 C4 C5 C6 C7 C8
8x4 bity

B4 B5 B6 B7 B8B1 B2 B3
8x6 bitov

S1 S2 S3 S4 S5 S6 S7 S8

48 bitov

A S-box is a table with 4 rows and 16 columns.

Rows are numbered by indices from 0 to 3, columns are
numbered by numbers from 0 to 15.

DES uses 8 S-boxes, S-box Si is assigned to block Bi .

Every Bi is a 6-bit number b1b2b3b4b5b6 and represents an
address of corresponding 4-bit number Ci in S-box Si .
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DES – Adressing in a S-box

Adress is calculated as follows:

Let B1 = b1b2b3b4b5b6.

b1b6 is the number of row and b2b3b4b5 is the number of column in
corresponding S-box.
(Rows resp. columns are numbered from 0 to 3 resp. from 0 to 15.)

S-box 1:
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Example:

B1 = 101011. b1b6 = (11)2 = 3, b2b3b4b5 = (0101)2 = 5.
S-box S1 contains in row 3 and column 5 number 9 (attention, rows and
columns are numbered from 0). Binary equivalent of 9 is 1001.
Therfore

S1(B1) = S1(101011) = 1001 = C1.
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DES – S-boxes 2, 3, 4

S-box 2:

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S-box 3:

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S-box 4:

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
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DES – S-boxes 5, 6, 7, 8

S-box 5:
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S-box 6:
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S-box 7:
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S-box 8:
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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DES – Final Permutation of Round Function

Table 12.7 P-Box Permutation
16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

C1 C2 C3 C4 C5 C6 C7 C8
8x4 bity

P

f(Ri,Ki)

B4 B5 B6 B7 B8B1 B2 B3
8x6 bitov

S1 S2 S3 S4 S5 S6 S7 S8

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25
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DES – Generation of Round Keys

C0 D0

PC−1

PC−2
56 48

PC−2
56 48

PC−2
56 48

LS1LS1

C1 D1 PC−2
56 48

LS2LS2

C2 D2

LS3 LS3

C3 D3

LS16LS16

C16 D16

56

56

28 28

28 28

28 28

28 28

28 28

28 28

28 28

28 28

28 28

K1

K2

K3

K16

Key for system DES is 56-bits long. Key is
saved as 64 bits arranged in 8 bytes, every
byte contains 7 bits of key and one parity bit
completing number of ones to even number.
Round key generation procedure:

56 bits of key are gained after removing parity
bits.
1. Order of those bits will be chained by
permutation PC-1.
2. Then 56 bits of key are divided into two
28-bit parts C0, D0.
3. Round key Ki is computed as follows: 3a.
Apply left circular shift LSi on Ci−1 and on
Di−1 with result Ci , Di .
LSi is left circular shif by one digit for
i = 1, 2, 9, 16 otherwise by two digits.
3b. Apply operation PC-2 on 56-bit
word CiDi . Operation PC-2 chooses and
permutates 48 bits from CiDi with result used
as round key Ki .
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DES – Permutation PC-1 and Mapping PC-2

Permutation PC-1
57 49 41 33 25 17 9 1 58 50 42 34 26 18

10 2 59 51 43 35 27 19 11 3 60 52 44 36

63 55 47 39 31 23 15 7 62 54 46 38 30 22

14 6 61 53 45 37 29 21 13 5 28 20 12 4

Mapping PC-2

14 17 11 24 1 5 3 28 15 6 21 10

23 19 12 4 26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40 51 45 33 48

44 49 39 56 34 53 46 42 50 36 29 32
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DES – Design Criteria for S- boxes

The only nonlinearity fo cipher DES is contained in S-boxes.
Security of Des depend only on proper design of S-boxex.

1 Everey row is a permutation of numbers 0 – 15.

2 No S-box is a linear or affine function of its inputs

3 Changing of one input bit of S-boxu causes the change at
least two bits of output.

4 x

S(x) and S(x ⊕ 001100) differ at least at two bits fro every
S-box a for every 6-bit x .

5 It holds S(x) 6= S(x ⊕ 11rs00) for every S-box, every 6-bit x
and arbitrary bits r , s ∈ {0, 1} .

6 If we fix one output bit, then the number of input values, with
this input is equal to 0 (or equal to 1), falls between 13 and
19.
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Attack against DES

Brute force attack – ciphertext only attack.

The number of keys 256 shows to be small in present days.
RSA announced a public challenge to crack the DES encryption
algorithm in January 1997 with 10 thousands dollars prize.
Four months later, the DES encryption key was found by
exhousted search using the collective resources and computing
power of literally thousands of computers.

Differential attack.

This is an instance of ”chosen plaintext attack”.
Couples of plaintexts P1, P2 with certain difference P1 ⊕ P2 are
enciphered and some information about key is deduced from the
differences C1 ⊕ C2 of corresponding ciphertexts.
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Linear Cryptoanalysis

Linear Cryptoanalysis.

If it holds for plaintext x1x2 . . . x64, key k1k2 . . . k56 and
corresponding ciphertext y1y2 . . . y64:

64⊕

i=1

aixi ⊕
64⊕

i=1

biyi =
56⊕

i=1

ciki

with probability different from 1
2 , this fact can be explited for

cryptanalysis.
It hold for DES:

x17 ⊕ y3 ⊕ y8 ⊕ y14 ⊕ y25 = Ki ,26

with probability
1

2
−

5

16
=

3

16
.

A chosen plaintext attack against DES was designed on the basis
of this fact. This attack analyses on averige 243 known plaintexts,
and succeeded to reveal key in 50 days of work of 12 computers
HP9735 in 1994.
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Attampts to Lengsten the Key

The simplest way how to enlarge the key is to use double
enciphering first with key K1 and the with key K2 instead of
encipherig with a single key.

šifrujeme: y = EK2 [EK1(x)] dešifrujeme: x = DK1 [DK2(y)]

However, if enciphering and deciphering operation would create a
group then there would exist a key K3 for every K1, K2 such that
EK2 [EK1 ] = EK3 . In this case a double enciphering would have no
sense.

Here are several examples of ciphers that are groups:

Ceasar cipher
Affine cipher
General monoalphabetic cipher
Hill cipher

However, there are several conjectures that DES is not a group.
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Meet-in-the-Middle Attack

Suppose that we know a couple x , y of
a plaintext and ciphertext enciphered by
pair of keys K1, K2, i.e.
y = EK2

[EK1
(x)]. Then

DK2
(y) = DK2

{
EK2

[EK1
(x)]

}
= EK1

(x)
We are searching for a pair of keys K1,
K2, such that

DK2
(y) = EK1

(x).

We create two tables –
Table 1. containing dependace EK1

(x)
ona K1 and
Table 2. containing dependace DK2

(y)
on K2.
If we find such entry in second colmumn
of Table 1. which equals to some entry
of second column of Table 2. then keys
in correspnding rows are candidates on
keys K1, K2.

K1 EK1
(x)

0
1
2

L1 z

256 − 1

K2 DK2
(y)

0
1
2

L2 z

256 − 1
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Complexity of Meet-in-the-Middle

Just proposed procedure can be made simpler in such a way, that we will
first create and store only Table 1. Then we will gererate DK2

(y) for
K2 = 0, 1, ... and search its occurence in the second column of Table 1.

Memory requirements: 2n ( = 256 ) rows of Table 1.

Time requirements:
2× 2n (= 2× 256) encodings plus
2n. log2 2

n = n.2n (= 56.256) steps to sort Table 1. by second column
and at most 2n. log2 2

n = n.2n (= 56.256) steps for searching in Table 1.
Together: 2.2n + n.2n + n.2n = (2 + 2n)2n = (1 + n).2n+1 (=57.257).

There are even more effective attacks.

Exhausted search for revealing combination of two keys K1, K2 requires
in worst case 22n (= 2112) encodings.

Colorary: Double enciphering does not awaited strengthening of cipher.
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3DES

Enciphering: y = EK3

{
DK2

[EK1
(x)]

}
Deciphering: y = DK1

{
EK2

[DK3
(x)]

}

or

Enciphering: y = EK1

{
DK2

[EK1
(x)]

}
Deciphering: y = DK1

{
EK2

[DK1
(x)]

}
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GOST

The GOST block cipher is a Soviet and Russian government
standard symmetric key block cipher with a block size of 64 bits.

The new standard also specifies a new 128-bit block cipher called
Kuznyechik.

GOST was developed in the 1970s. The standard had been marked
Top Secret.

Shortly after the dissolution of the USSR, it was declassified and it
was released to the public in 1994.

GOST was a Soviet alternative to the United States standard
algorithm DES.
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GOST

C1 C8C2 C3 C4 C5 C6 C7

S8S1 S2 S3 S4 S5 S6 S7

Ri Ki

=(Ri+Ki) mod 2

f(Ri,Ki)

32 32

          shift
11−bit left circular

32 Soviet and Rusian cryptosystem
used in period of cold war.

Block cipher.

64-bit block, 256-bit key.

Feistel network with 32 rounds.

S-boxes are one row tables
containing permutations of
numbers 0, 1, . . . , 15.
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S-boxes of GOST

S-box 1:

4 10 9 2 13 8 0 14 6 11 1 12 7 15 5 3

S-box 2:

14 11 4 12 6 13 15 10 2 3 8 1 0 7 5 9

S-box 3:

5 8 1 13 10 3 4 2 14 15 12 7 6 0 9 11

S-box 4:

7 13 10 1 0 8 9 15 14 4 6 12 11 2 5 3

S-box 5:

6 12 7 1 5 15 13 8 4 10 9 14 0 3 11 2

S-box 6:

4 11 10 0 7 2 1 13 3 6 8 4 9 12 15 14
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S-boxy kryptosystému GOST

S-box 7:

13 11 4 1 3 15 5 9 0 10 14 7 6 8 2 12

S-box 8:

1 15 13 0 5 7 10 4 9 2 3 14 6 11 8 12

Round Keys Generation

GOST uses 256-bit key. It can be devided into eight 32-bit keys
K1,K2, . . . ,K8.

K1 K2 K3 K4 K5 K6 K7 K8

Those are used in the following order:
K1,K2, . . . ,K8,K1,K2, . . . ,K8,K1,K2, . . . ,K8,K8,K7, . . .K1
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IDEA

IDEA – International Data Encryption
Algorithm (Xueija Lai and James Massey) -
1992.
IDEA is patented, US patent expired
7.1.2012.

Block cipher – 64-bit blok
Key 128-bit.

64- bit block is divided into 4 16-bit parts
x1, x2, x3, x4, which will be processed in 8
rounds of algorithm plus final half round.

Rounds use the following operations:
⊕

– bitwise XOR

⊞ – adding mod 216

⊙
– multiplication mod (216 + 1) while
16-bit word consisting of all 0
is taken as reprezentation
of the number 216.

One Round of Algorithm IDEA

x1 x2 x3 x4

y1 y2 y3 y4
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IDEA – Generation of Round Keys

Final Half Round

Generation of Round Keys

Every round needs 6 keys and the final half round
needs 4 keys, i.e. together 6 ∗ 8 + 4 = 52 16-bit keys.
128 bit key will first divided into first 8 16-bit round
keys.
Then left circular shift by 25 bits is applied to 128 bits
of key and further 8 16-bit round keys are gained.
Key is again rotated by circular shif by 25 bits and
next 8 round keys are generated. Etc.

:
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IDEA – Deciphering

Deciphering

The same algorithm is used also for deciphering with the only
difference that instead of the sequence of round keys
K1,K2, . . .K52 the sequence of inverse values resp. opposite values
of keys K52,K51, . . . ,K1 is used.
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Opetional Modes of Block Ciphers

Let us have a block cipher with enciphering function y = EK (x)
and deciphering function x = DK (y).
We have a plaintext represented as a sequence of blocks:

x1, x2, . . . , xn

There are several ways how to create corresponding sequence of
blocks of ciphertext

y1, y2, . . . , yn

using enciphering function EK (x) in such a way, that it is possible
to reconstruct original plaintext

x1, x2, . . . , xn

using deciphering mapping DK (y).
Those ways are called operational modes of block ciphers.
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ECB mód

ECB – Electronic Code Book mód

ECB mode is the simplest way where a plaintext is enciphered by
formula

yi = EK (xi )

and deciphered as
xi = DK (yi )

E ()K

1

x

y

1

E ()K

x

y

2

2

E ()K

x

y

3

3

K

1

1

K

2

2

K

3

3

y

x

y

x

y

x

D () D () D ()

Enciphering in ECB mode Deciphering in ECB mode

Disadvantage of ECB mode:
The same block xi of plaintext is enciphered every time into the
same block of ciphertext what makes some attacks easier.

Stanislav Palúch, Fakula riadenia a informatiky, Žilinská univerzita Symmetric Cryptography 34/54



OFB – Output Feedback Mode

OFB – Output Feedback Mode

This mode requires first to choose a random initial block IV called also
initial vector, set y0 = IV .
Then z1 is calculated as z1 = EK (y0), and recurently zi+1 = EK (zi ).

IV=y0 1zE ()K 2zE ()K E ()K 3z

Enciphering procedure is
yi = zi ⊕ xi

Enciphered message is the sequence y0, y1, y2, . . . , yn (it is one block
longer then the original message).
Deciphering procedure is

xi = zi ⊕ yi .

This mode is in fact a stream cipher with key stream z1, z2, . . . , zn,

therefore it is necessary to use every time another initial vector.
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CBC Cipher Block Chaining Mode

Cipher Block Chaining Mode

Enciphering procedure is

yi = EK (xi ⊕ yi−1)

Eciphered message is the
sequence

y0, y1, y2, . . . , yn

(it is one block longer than the
original message).

Deciphering procedure is

xi = yi−1 ⊕ DK (yi ).

x x

IV=y0

1 2

y1 y2

E ()E ()K K

K KD () D ()

1 2

1 2

y

x

y

x

IV=y0
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CFB Cipher Feedback Mode

Cipher Feedback Mode

Enciphering procedure is

yi = EK (yi−1)⊕ xi

Eciphered message is the
sequence

y0, y1, y2, . . . , yn

(it is one block longer than
the original message).

Deciphering procedure is

xi = yi ⊕ EK (yi−1).

E ()K E ()K

y1 y2

E ()K

x1

IV=y0

x2

E ()K E ()K E ()K

1

IV=y0

2

1 2

y

x

y

x
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AES – Mathematical Background

Galois field GF (28)
Évariste Galois (25.10. – 31.5.1832) was a French mathematician. His
work laid the foundations for Galois theory and group theory, two major
branches of abstract algebra. He died at age 20 from wounds suffered in
a duel.
Elements of GF (28) are polynomials of the type

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x
1 + b0

in coefficients in Z2.
Such polynomial models a byte b7b6b5b4b3b2b1b0. For example
{0 1 0 1 0 1 1 1} corresponds to polynomial x6 + x4 + x2 + x + 1.

Addition in GF (28) is addition of polynomials over Z2.

(x6 + x4 + x2 + x + 1) + (x7 + x6 + x4 + x2) = (x7 + x + 1)
{0 1 0 1 0 1 1 1} ⊕ {1 1 0 1 0 1 0 0}= {1 0 0 0 0 1 1}
In hexadecimal notatione (57)H ⊕ (D4)H = (83)H .

Byte addition ⊕ corresponds to computer operation bitwise XOR.
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AES – Multiplication in Galios Field GF (28)

Multiplication in GF (28) is defined as

p(x)⊗ q(x) = p(x).q(x) mod m(x),

where m(x) je irreducible polynomial of degree 8 over GF (28).

AES uses this irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1.

Example.
(
(x6 + x

4 + x
2 + x + 1)

︸ ︷︷ ︸

57H={01010111}

. (x7 + x + 1)
︸ ︷︷ ︸

83H={10000011}

)
mod (x8 + x

4 + x
3 + x + 1)

︸ ︷︷ ︸

=m(x)

=

(x13 + x11 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1) mod m(x) =
= (x7 + x6 + 1)

︸ ︷︷ ︸

C1H={11000001}

Therefore it holds in GF (28):

{01010111} ⊗ {10000011} = {11000001}

57H ⊗ 83H = C1H
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AES – Multiplication by Number 2 ≡ {00000010} ≡ x

The following text is devoted to efficient computer implementation of
multiplication in alois Field GF (28) where its elements are represented by
bytes.
Polynomial x corresponds to byte {00000010}, i.e. to the number
2 = (02)H . Let us examine {00000010}⊗b.

Let
b(x) = b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x

1 + b0.
Then
x .b(x) = b7x

8 + b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x

If b7 = 0, then x .b(x) mod m(x) = x .b(x),
where m(x) = x8 + x4 + x3 + x + 1.

This operation is left shift of the byte b by 1 bit.
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AES – Násobenie a⊗ b

If b7 = 1, then
x .b(x) mod m(x) = x .b(x)⊖m(x) = x .b(x)⊕m(x).

This operation can be executed by left shift of the byte b by 1 bit
followed by bitwise XOR with byte {00011011} (hexadecimal (1B)H).
Following function executes multiplication of b by 2:
xtime(b)

1. if (b[7] == 1) t=00011011 else t=00000000;

2. for(i=7 to 1) b[i]=b[i-1];

3. b = b⊕ t;

4. return b;

Multiplication a⊗ b = c is realized as follows:
1. c=00000000;

p = a;

2. for(i=0 to 7);

if(b[i] == 1) c = c⊕ p;

p=xtime(p);

3. return c;
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AES – Computation of Inverse of b−1

GF (28) together with operations ⊕, ⊗ creates a finite field in which

nulll element is 0 — polynomial – 00000000

unit element is 1 – 00000001 ≡ 0x7 + 0x6 + · · ·+ 0x + 1

for every element b the exists an opposite eldment – it is bby
himself,

for every element b 6= 0 there exists an inverse element b−1.

Inverse element can be calculated by extended Euclidean algorithm.
However, for usage in AES it suffices to calculate table of binary
operation ⊗ (it has dimensions 256× 256) and to find that c , for every
b = 1, 2, . . . , 255 for which it hodls b ⊗ c = 1, and the to set b−1 = c .

If we create an array INVERSE[0..255] with 256 entries of the type

0 1 2−1 3−1 . . . . . . 255−1

then we obtain the inverse element b−1 to element b as INVERSE[b] –

element of array INVERSE[ ] with index b.
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AES – Advanced Encryption Standard – History

1997 – initialisation of the process of choosing a new cryptographic
algorithm – NIST
(National Institute of Standards and Technology - USA)

15 algorithms were taking part in competition

Vincent Rijmen (1970) a Joan Daemen (1965) (Belgicko) published
algorithm Rijndael in 1998

Rijndael – later named as AES – became effective as a federal
government standard on May 26, 2002, after five-year
standardization process and after approval by the Secretary of
Commerce. 1, NSA2

AES is the only public enciphering algorithm approved by NSA for
top secret informations.

1FIPS – Federal Information Processing Standard)
2NSA – National Security Agency
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AES – Advanced Encryption Standard – Advantages

Advantages of AES:

– High effectivity and speed both in hardware and software
implementation

– Low memory requirements

– Possibility of protections against attack throgh side chanals
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AES - Advanced Encryption Standard – Špecifikácia

Symmetric block cipher

Block lengthh: 128 bits

Key length: optional 128, 192 or 256 bits

128-bit block of plaintext is considered as a 16-membered sequence
of 8-bit bytes:

a00a10a20a30a01a11a21a31a02a12a22a32a03a13a23a33

which are arranged into tables called a state.

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33

State Round key

This state is processed by several rounds of operations. Some of them are
dependant on round key which is also represented as a matrix of bytes.
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AES - Operation SubBytes

Two operations are executed with
every byte a of matrix State

1 First an inverse element
x = a−1 to a in GF (28) is
found if a 6= 0. If a = 0, then
x = 0.

2 Then byte
b = b0, b1, b2, b3, b4, b5, b6, b7
is calculated as follows:















b0
b1
b2
b3
b4
b5
b6
b7















=















1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1















.















x0
x1
x2
x3
x4
x5
x6
x7















+















1
1
0
0
0
1
1
0














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AES – Table of Function SubByte
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AES - Operation ShiftRows

Following left circular shift ar apllied on rows of State

1 1. row remines unchanged

2 2. row - shift by 1 byte - i.e. 8 bits

3 3. row - shift by 2 bytes - i.e. 16 bits

4 4. row - shift by 3 bytes - i.e. 24 bits
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AES- Operation MixColumns

This operation consideres table State as a matrix of elements of
field GF (28). Every column of matrix State will be changed as follows:

ai =
[
a0i a1i a2i a3i

]T
vykonáme







b0i
b1i
b2i
b3i







︸ ︷︷ ︸

bi

=







02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







︸ ︷︷ ︸

M

⊗

GF (28)







a0i
a1i
a2i
a3i







︸ ︷︷ ︸

ai

t. j. bi = M⊗ ai

This operation can be executed as single matrix operation: B = M⊗ A

M−1 =







0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e






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AES – FunkctionAddRoundKey

This operations XORs every aij element of State with entry kij of
round key matrix K with the same indices

bij = aij ⊕ kij ,

In matrix notation:
B = A⊕K.
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AES – Enciphering Algorithm

1 Initial round

1.1 AddRoundKey

2 for Round = 1 to Nr − 1

2.1 SubBytes
2.2 ShiftRows
2.3 MixColumns
2.4 AddRoundKey

3 Final round (without MixColumns)

3.1 SubBytes
3.2 ShiftRows
3.3 AddRoundKey

Key length 128 192 256
Number of rounds Nr 10 12 14
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AES – Deciphering

It should to be:

1 Initial round

1.1 AddRoundKey
1.2 InvShiftRows
1.3 InvSubBytes

2 for Round = 1 to Nr − 1

2.1 AddRoundKey
2.2 InvMixColumns
2.3 InvShiftRows
2.4 InvSubBytes

3 Final round

3.3 AddRoundKey

It is:

1 Initial round

1.1 AddRoundKey

2 for Round = 1 to Nr − 1

2.1 InvSubBytes
2.2 InvShiftRows
2.3 InvMixColumns
2.4 AddRoundKey

3 Final round

3.1 InvSubBytes
3.2 InvShiftRows
3.3 AddRoundKey

The order of operations InvShiftRows and InvSubBytes can be changed.

AddRoundKey(InvMixcolumns(B)) = K⊕M−1.B.
InvMixcolumns(AddRoundKey(B)) = M−1.(K⊕ B) = M−1K⊕M−1B.
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AES – Round Key Expansion Funkction

Example for 128 bit key

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11

k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33

1. Round Key 2. Round Key 3. Round Key

Wi =

{

Wi−4 ⊕Wi−1 ak i nie je delitené 4

Wi−4 ⊕ SubByte(RotByte(Wi−1))⊕ Rcon(i/4) ak i je delitené 4

Rcon(i) = [{x i−1}{00}{00}{00}]

RotByte[w1,w2,w3,w4] = [w2,w3,w4,w1]
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AES – Round Key Expansion Funkction

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin
wordwordword temp
i = 0
while (i < Nk)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i = i+1

end while
i = Nk
while (i < Nb * (Nr+1)]
temp = w[i-1]
if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)
end if
w[i] = w[i-Nk] xor temp
i = i + 1

end while

end

Nb – = 4 – the number of columns of matrix State
Nk – = 4, 6 resp. 8 for 128-, 192- resp. 256-bit key

(the number of 32-bit words of key = the number of columns of key matrix)

Nr – = 10, 12, resp. 16 for 128-, 192- resp. 256-bit key – the number of rounds
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